A Comparative Study on the Prediction of Occupational Diseases in China with Hybrid Algorithm Combing Models

Author:

Lu Yaoqin1,Yan Huan2,Zhang Lijiang3,Liu Jiwen1ORCID

Affiliation:

1. Department of Occupational and Environmental Health, College of Public Health, Xinjiang Medical University, Wulumuqi, Xinjiang 830011, China

2. Xinjiang Engineering Technology Research Center for Green Processing of Nature Product Center, Xinjiang Autonomous Academy of Instrumental Analysis, Urumqi, Xinjiang 830011, China

3. Department of Occupational Disease Prevention and Control, Wulumuqi Center for Disease Control and Prevention, Wulumuqi, Xinjiang 830026, China

Abstract

Occupational disease is a huge problem in China, and many workers are under risk. Accurate forecasting of occupational disease incidence can provide critical information for prevention and control. Therefore, in this study, five hybrid algorithm combing models were assessed on their effectiveness and applicability to predict the incidence of occupational diseases in China. The five hybrid algorithm combing models are the combination of five grey models (EGM, ODGM, EDGM, DGM, and Verhulst) and five state-of-art machine learning models (KNN, SVM, RF, GBM, and ANN). The quality of the models were assessed based on the accuracy of model prediction as well as minimizing mean absolute percentage error (MAPE) and root-mean-squared error (RMSE). Our results showed that the GM-ANN model provided the most precise prediction among all the models with lowest mean absolute percentage error (MAPE) of 3.49% and root-mean-squared error (RMSE) of 1076.60. Therefore, the GM-ANN model can be used for precise prediction of occupational diseases in China, which may provide valuable information for the prevention and control of occupational diseases in the future.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3