Unlocking the Magnetic and Half-Metallic Properties of AMY2 (A = Cu, Ag; M = Sc, Ti, V, Cr, Mn, Fe; Y = S, Se) Compounds in Chalcopyrite Structure: An Ab Initio Study for Spintronics Applications

Author:

Vijayalakshmi D.12ORCID,Ramachandran Tholkappiyan34ORCID,Jaiganesh G.5ORCID,Kalpana G.1ORCID,Hamed Fathalla6ORCID

Affiliation:

1. Department of Physics, College of Engineering, Anna University, Chennai 600 025, India

2. Department of Physics, Vels Institute of Science, Technology and Advanced Studies (VISTAS) Pallavaram, Chennai 600117, Tamil Nadu, India

3. Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India

4. Department of Physics, Khalifa University of Science and Technology, Abu Dhabi P. O. Box 127788, UAE

5. Excel Instruments, Gala, No. 9/10 Building No. 2 Dias Industrial Estate, East Sativali Naka – 401208, Vasai, India

6. Department of Physics, College of Science, United Arab Emirates University, Al-Ain P.O.X. 15551, UAE

Abstract

We present an investigation into the magnetism exhibited by AMY2 compounds characterized by a chalcopyrite structure, where A can be Cu or Ag, M can be Sc, Ti, V, Cr, Mn, or Fe, and Y can be either S or Se. By substituting M atoms at the Ga position of AGaY2 compounds, the magnetic properties were calculated using the full potential linearized augmented plane wave method under the generalized gradient approximation and local spin density approximation with the WIEN2K code. The obtained spin-polarized results confirmed the presence of ferromagnetic and half-metallic (HM) properties in AMY2 compounds (A = Cu, Ag; M = Ti, V, Cr, Mn; Y = S, Se), wherein the HM property is preserved through p-d hybridization of p states of Y (S, Se) atoms with d (t2g) states of M (M = Ti, V, Cr, Mn) atoms, and minimal contribution of −s states of A (A = Cu, Ag) atoms. The total magnetic moments for AMY2 compounds were calculated as 1.00, 2.00, 3.00, and 4.00 µB/f.u. for M = Ti, V, Cr, Mn, respectively. For AFeY2 compounds (A = Cu, Ag; Y = S, Se), electronic band structures for both up spin and down spin states were identical, suggesting antiferromagnetic behavior at equilibrium, while AScY2 compounds (A = Cu, Ag; Y = S, Se) exhibited nonmagnetic properties at equilibrium. Overall, the accurate HM properties of AMY2 materials suggest promising prospects for their utilization in spintronics and magnetic storage device applications.

Publisher

Hindawi Limited

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3