Affiliation:
1. Laboratoire des Sciences et Technologie de l'Environnement (LSTE), Département de Chimie, Faculté des Sciences Exactes, Université de Mentouri, Constantine, Algeria
Abstract
The photodegradation process of m-cresol (3-methylphenol), induced by Fe(III)-Cit complex, was investigated upon irradiation at 365 nm in natural water. The composition and photochemical properties of Fe(III)-Cit complex were studied by UV-Visible absorption spectrophotometer for optimizing the stoichiometry of the complex and photolysis under irradiation at 365 nm, respectively. A dark investigation of the system was performed before studying the photochemical behavior. The photooxidation efficiencies of m-cresol were dependent on the pH value, optimized at pH 2.86, oxygen, initial concentrations of Fe(III)-Cit complex, and m-cresol. Additionally, to look into the mechanism of m-cresol degradation using Fe(III)-Cit, tertiobutanol alcohol was used as scavenger for hydroxyl radicals and the result suggested that hydroxyl radical attack was the main pathway of m-cresol degradation. Besides, oxygen can enhance the photolysis of Fe(III)-Citrate complex by trapping the electron on the carbon centered radical formed after the photoredox process. Then O2•−formed reacts rapidly leading finally to formation of•OH radical. In absence of oxygen, less reactive species are formed; consequently the disappearance of m-cresol was strongly inhibited. Our work shows that the presence of Fe(III)-Citrate complex could have a considerable impact on the fate of organic pollutant in aquatic environment.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献