Affiliation:
1. Research Institute of Mechanical Technology, Pusan National University, Busan 609-735, Republic of Korea
2. School of Mechanical Engineering, Pusan National University, Busan 609-735, Republic of Korea
Abstract
In general, although some random variables such as wind speed, temperature, and load are known to have multimodal distributions, input or output random variables are considered to follow unimodal distributions without assessing the unimodality or multimodality of distributions from samples. In uncertainty analysis, estimating unimodal distribution as multimodal distribution or vice versa can lead to erroneous analysis results. Thus, whether a distribution is unimodal or multimodal must be assessed before the estimation of distributions. In this paper, the bimodality coefficient (BC) and Hartigan’s dip statistic (HDS), which are representative methods for assessing multimodality, are introduced and compared. Then, a combined HDS with BC method is proposed. The proposed method has the advantages of both BC and HDS by using the skewness and kurtosis of samples as well as the dip statistic through a link function between the BC values in BC and significance level in HDS. To verify the performance of the proposed method, statistical simulation tests were conducted to evaluate the multimodality for various unimodal, bimodal, and trimodal models. The implementation of the proposed method to real engineering data is shown through case studies. The results demonstrate that the proposed method is more accurate, robust, and reliable than the BC and original HDS alone.
Subject
General Engineering,General Mathematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献