Functional Corticomuscular Signal Coupling Is Weakened during Voluntary Motor Action in Cancer-Related Fatigue

Author:

Jiang Changhao1ORCID,Yang Qi2,Chen Tingting3,Siemionow Vlodek2,Ranganathan Vinoth K.2,Yan Alice F.4,Yue Guang H.256ORCID

Affiliation:

1. Beijing Key Lab of Physical Fitness Evaluation and Tech Analysis, Capital University of Physical Education and Sports, Beijing, China

2. Department of Biomedical Engineering, The Cleveland Clinic, Cleveland, OH 44195, USA

3. Beijing Key Laboratory of Learning and Cognition & School of Psychology, Capital Normal University, Beijing, China

4. School of Public Health, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA

5. Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ 07052, USA

6. Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA

Abstract

Background and Purpose. Cancer-related fatigue (CRF) is widely recognized as one of the most common symptoms and side effects of cancer and/or its treatment. However, neuropathological mechanisms contributing to CRF are largely unknown, and the lack of knowledge makes CRF difficult to treat. Recent research has shown dissociation between changes in the brain and muscle signals during voluntary motor performance in cancer survivors with CRF, and this dissociation may be caused by an interruption in functional coupling (FC) of the two signals. The goal of this study was to assess the FC between EEG (cortical signal) and EMG (muscular signal) in individuals with CRF and compare the FC with that of healthy controls during a motor task that led to progressive muscle fatigue. Method. Eight cancer survivors with CRF and nine healthy participants sustained an isometric elbow flexion contraction (at 30% maximal level) until self-perceived exhaustion. The entire duration of the EEG and EMG recordings was divided into the first-half (less-fatigue stage) and second-half (more-fatigue stage) artifact-free epochs without overlapping. The EEG-EMG coupling (measured by coherence of the two signals) in each group and stage was computed. Coherence values at different frequencies were statistically analyzed using a repeated-measure general linear model. Results. The results demonstrated that compared to healthy controls, CRF participants sustained the contraction for a significantly shorter time and exhibited robust and significantly lower EEG-EMG coherence at the alpha (8~14 Hz) and beta (15~35 Hz) frequency bands. Both the CRF and healthy control groups exhibited significantly decreased EEG-EMG coherence from the less-fatigue to more-fatigue stages at the alpha and beta frequency bands, indicating fatigue-induced weakening of functional corticomuscular coupling. Conclusion. Impaired functional coupling between the brain and muscle signals could be a consequence of cancer and/or its treatment, and it may be one of the contributing factors to the abnormal feeling of fatigue that caused the early failure of sustaining a prolonged motor task.

Funder

Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3