Affiliation:
1. Department of Theoretical Physics and Astrophysics, Faculty of Physics, University of Tabriz, Tabriz 51666-16471, Iran
Abstract
The azimuthal and magnetic quantum numbers of spherical harmonicsYlm(θ,ϕ)describe quantization corresponding to the magnitude andz-component of angular momentum operator in the framework of realization ofsu(2)Lie algebra symmetry. The azimuthal quantum numberlallocates to itself an additional ladder symmetry by the operators which are written in terms ofl. Here, it is shown that simultaneous realization of both symmetries inherits the positive and negative(l-m)- and(l+m)-integer discrete irreducible representations forsu(1,1)Lie algebra via the spherical harmonics on the sphere as a compact manifold. So, in addition to realizing the unitary irreducible representation ofsu(2)compact Lie algebra via theYlm(θ,ϕ)’s for a givenl, we can also representsu(1,1)noncompact Lie algebra by spherical harmonics for given values ofl-mandl+m.
Subject
Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献