Midbrain Frequency Representation following Moderately Intense Neonatal Sound Exposure in a Precocious Animal Model (Chinchilla laniger)

Author:

D’Alessandro Lisa M.123ORCID,Harrison Robert V.1234ORCID

Affiliation:

1. Department of Physiology, University of Toronto, Toronto, Canada M5S 1A8

2. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada M5S 3G9

3. The Auditory Science Laboratory, Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada M5G 1X8

4. Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Canada M5G 2N2

Abstract

Auditory brain areas undergo reorganization resulting from abnormal sensory input during early postnatal development. This is evident from studies at the cortical level but it remains unclear whether there is reorganization in the auditory midbrain in a species similar to the human, that is, with early hearing onset. We have explored midbrain plasticity in the chinchilla, a precocious species that matches the human in terms of hearing development. Neonatal chinchillas were chronically exposed to a 2 kHz narrowband sound at 70 dB SPL for 4 weeks. Tonotopic maps in inferior colliculus (central nucleus) were defined based on single neuron characteristic frequency. We hypothesized an overrepresentation of the 2 kHz region of the maps. However, we observed a significant decrease in the proportion of neurons dedicated to the 2 kHz octave band and also away from the exposure frequency at 8 kHz. In addition, we report a significant increase in low frequency representation (<1 kHz), again a change to tonotopic mapping distant to the 2 kHz region. Thus in a precocious species, tonotopic maps in auditory midbrain are altered following abnormal stimulation during development. However, these changes are more complex than the overrepresentation of exposure related frequency regions that are often reported.

Funder

Masonic Foundation of Ontario

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3