Analysis of Vibration Transmission Path in Packaging System and Design of Teaching Experiment

Author:

Gong Meilin1ORCID,Lin Cong2

Affiliation:

1. Administrative Office of Discipline Construction and Graduate Program, Jinan University, Zhuhai 519070, China

2. Packaging Engineering Institute, Jinan University, Zhuhai 519070, China

Abstract

It is essential for realizing the most suitable product buffer packaging design to quantify the vibration transmission characteristics of the product packaging system. The experiment system for the vibration transmission path of protective packaging is designed in this paper. The practical system is used to analyze the vibration transfer path of the product packaging system and identify the critical transfer path. The concepts of the cushions’ contribution rate and the cushions’ weighted contribution rate are introduced. The product cushioning based on the weighted equal contribution rate of the cushions is proposed. It has been verified by experiments that the system can accurately identify the transfer path with the weighted contribution rate of the cushions as a reference for the design of product buffer packaging, which improves the utilization rate of buffer packaging materials and reduces the cost of packaging materials. The weighted equal contribution rates of buffer pads 1, 2, 3, and 4 are 40%, 27%, 22%, and 11%, respectively. For the needs of experiment teaching, the teaching content based on the protective packaging transfer path testing system is designed, which provides a reference for the practical education of the packaging specialty.

Funder

Research on Innovation in Scientific Research Management under the Background of “New Liberal Arts” Construction: Strategies and Pathways

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3