Double-Gene Copromoting Expression Analysis in tPA/GH Transgenic Goat Mammary Epithelial Cells and Thrombolytic Activity of tPA In Vitro

Author:

Song Shaozheng1,Luo Yaoling2ORCID,Liu Zhaoxia3,Li Dan1,Ye Junsong4567ORCID,He ZhengYi26ORCID

Affiliation:

1. School of Health and Nursing/Department of Basic, Wuxi Taihu University, China

2. Department of Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China

3. Department of Reproductive Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China

4. Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China

5. Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, Jiangxi, China

6. Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China

7. Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, China

Abstract

Human tissue-plasminogen activator (tPA) is a thrombolytic drug widely used in the treatment of stroke, pulmonary thrombosis, acute myocardial infarction, and other thrombotic diseases. The double genes cointegrated into the organisms and cells can produce a synergistic effect, which will improve the expression level of the target gene. However, the study of the integration of the GH and tPA genes to improve the expression level of tPA has not yet been reported. In order to elucidate this, we generated monoclonal goat mammary epithelial cell lines with tPA/GH double-gene integration and analyzed the tPA expression level in single- and double-gene integrated cells. We selected the mammary gland-specific expressing vectors BLC14/tPA and BLC14/GH with the β-lactoglobulin gene as a regulatory sequence in our previous research. The tPA and GH genes were electronically cotransfected into goat mammary epithelial cells. Resistant cell lines were screened by G418, and transgenic monoclonal cell lines were confirmed by PCR. The tPA expression was induced by prolactin and detected in the cell induction solution after 48 h by ELISA and Western blotting. We detected the tPA biological activity in vitro by fibrin agarose plate assay (FAPA). The results showed that a total of 207 resistant monoclonal cells were obtained, including 126 cell lines with tPA monogenic integration and 51 cell lines with tPA/GH double-gene integration. The rate of double-gene integration was 24.6% (51/207). A total of 48 cells expressed tPA, of which 25.3% (19/75) cells expressed single gene, and 56.9% (29/51) cells expressed double genes. The concentration of tPA in single-gene-expressing cells was 8.0-64.0 μg/mL, and the tPA level in double-gene-expressing cells was significantly higher (200-7200 μg/mL). In addition, the tPA had a relatively strong in vitro thrombolytic activity determined by FAPA. The results showed that goat mammary epithelial cell lines with tPA/GH gene integration were successfully established by electrotransfection, and the expression level of tPA in double-gene integrated cell lines was significantly increased. This study provided a new way for the preparation of a transgenic goat and other animal with high tPA expression by somatic cell nuclear transfer. The findings also laid a foundation for efficient production of pharmaceutical proteins in transgenic animal mammary gland bioreactors in the future.

Funder

Jiangxi Provincial Natural Science Foundation

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3