Capsaicin Alleviates Vascular Endothelial Dysfunction and Cardiomyopathy via TRPV1/eNOS Pathway in Diabetic Rats

Author:

Wang Qiuyue1,Zhang Caihui1,Yang Chen1ORCID,Sun Yue1,Chen Keyang2,Lu Yao13ORCID

Affiliation:

1. Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

2. Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei 230032, China

3. Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Abstract

Background. Endothelial dysfunction and cardiomyopathy are considered to be important vascular complications associated with diabetes. This study was designed to investigate whether capsaicin (CAP), a selective TRPV1 agonist, could prevent diabetes-induced endothelial dysfunction and cardiomyopathy. Methods. Male Sprague Dawley rats aged 8 weeks were injected intraperitoneally with streptozotocin (STZ, 50 mg/kg) to establish the diabetes model. The diabetic rats were randomly divided into the untreated diabetes group (DM, 10/group) and diabetes plus CAP treatment group (DM+CAP, 10/group); meanwhile, the nondiabetic healthy rats were used as normal controls (10/group). DM+CAP group were treated with CAP by gavage for 8 weeks. The cultured mouse vascular endothelial cells were exposed to different concentrations of glucose in the presence or absence of CAP treatment. The TRPV1 inhibitor capsazepine (CPZ) and eNOS inhibitor L-NAME were used in vivo and in vitro experiment. Results. CAP treatment significantly decreased the serum total cholesterol (TC) and total triglyceride (TG) and ameliorated the pathogenesis and fibrosis in the heart, while did not significantly improve plasma glucose level and the body weights of diabetic rats. In addition, CAP enhanced the expression of TRPV1 and eNOS in the heart and normalized the vascular permeability under diabetic state. Similarly, CAP treatment also increased nitric oxide and reduced reactive oxygen species. The same results were observed in cultured mouse vascular endothelial cells by CAP treatment. These beneficial effects of CAP were abolished by either CPZ or L-NAME. Conclusions. CAP might protect against hyperglycemia-induced endothelial dysfunction and diabetic cardiomyopathy through TRPV1/eNOS pathway.

Funder

Natural Science Foundation of Anhui Province for Outstanding Youth

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3