MicroRNA-195 Activates Hepatic Stellate Cells In Vitro by Targeting Smad7

Author:

Song Li-Ying1,Ma Yu-Tao2,Wu Cui-Fang1,Wang Chun-Jiang1,Fang Wei-Jin1,Liu Shi-Kun1ORCID

Affiliation:

1. Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China

2. Department of Pharmacy, Shaoxing Seventh People’s Hospital, Shaoxing, Zhejiang, China

Abstract

Background and Aim. Aberrant activation of the TGF-β1/Smad pathway contributes to the activation of hepatic stellate cells (HSCs). MicroRNA-195 has been shown to regulate the activation of HSCs. The aim of this study was to investigate the role of miRNA-195 in HSCs activation. Methods. A liver fibrotic rat model induced by diethylnitrosamine was established. Dual luciferase reporter assays were performed to verify that Smad7 was the target of miRNA-195. The expression levels of miR-195, Smad7, and α-SMA in HSC-T6 transfected, respectively, with miR-195 mimic, inhibitor, or control were measured by qRT-PCR. The protein expression of Smad7 was detected by Western blot analysis. Results. Enhanced miR-195 and decreased Smad7 were observed in diethylnitrosamine-induced liver fibrotic rats (P<0.05). Dual luciferase reporter assays showed that the miR-195 mimic significantly suppressed the luciferase activity of a reporter plasmid carrying the binding site of miR-195 on the 3′UTR of Smad7 (P<0.05). The miR-195 mimics activated HSCs, further elevated miR-195 and α-SMA (P<0.01), and reduced the Smad7 level (P<0.05). The miR-195 inhibitors blocked the activation of HSCs, reduced the expression of miR-195 and α-SMA (P<0.01), and upregulated the expression of Smad7 (P<0.05). Conclusion. Collectively, we demonstrated that miRNA-195 activated HSCs by targeting Smad7.

Funder

National Clinical Pharmacy Key Specialty Construction Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3