The Anti-Inflammatory Activity of Boron Derivatives in Rodents

Author:

Hall Iris H.1,Burnham Bruce S.1,Chen Shang Y.1,Sood Anup2,Spielvogel Bernard F.2,Morse Karen W.3

Affiliation:

1. Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill 27599-7360, North Carolina, USA

2. Boron Biologicals, Inc., 620 Hutton street, Raleigh 27606, North Carolina, USA

3. Department of Chemistry and Biochemistry, Utah State University, Logan 84322, Utah, USA

Abstract

Acyclic amine-carboxyboranes were effective anti-inflammatory agents in mice at 8 mg/kg x 2. These amine-carboxyboranes were more effective than the standard indomethacin at 8 mg/kg x 2, pentoxifylline at 50 mg/kg x 2, and phenylbutazone at 50 mg/kg x 2. The heterocyclic amine derivatives as well as amine-carbamoylboranes, carboalkoxyboranes, and cyanoboranes were generally less active. However, selected aminomethyl-phosphonate-N-cyanoboranes demonstrated greater than 60% reduction of induced inflammation. The boron compounds were also active in the rat induced edema, chronic arthritis, and pleurisy screens, demonstrating activity similar to the standard indomethacin. The compounds were effecive in reducing local pain and decreased the tail flick reflex to pain. The derivatives which demonstrated good anti-inflammatory activity were effective inhibitors of hydrolytic lysosomal, and proteolytic enzyme activities with IC50 values equal to 10-6M in mouse macrophages, human leukocytes, and Be Sal osteofibrolytic cells. In these same cell lines, the agents blocked prostaglandin cyclooxygenase activity with IC50 values of 10-6M. In mouse macrophage and human leukocytes, 5′ lipoxygenase activity was also inhibited by the boron derivatives with IC50 values of 10-6M. These IC50 values for inhibition of these enzyme activities are consistent with published values of known anti-inflammatory agents which target these enzymes.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Drug Discovery,Pharmacology,Toxicology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3