A Gaussian Process Latent Variable Model for Subspace Clustering

Author:

Li Shangfang1ORCID

Affiliation:

1. School of Mathematics and Statistics, Yulin Normal University, Yulin 537000, Guangxi, China

Abstract

Effective feature representation is the key to success of machine learning applications. Recently, many feature learning models have been proposed. Among these models, the Gaussian process latent variable model (GPLVM) for nonlinear feature learning has received much attention because of its superior performance. However, most of the existing GPLVMs are mainly designed for classification and regression tasks, thus cannot be used in data clustering task. To address this issue and extend the application scope, this paper proposes a novel GPLVM for clustering (C-GPLVM). Specifically, by combining GPLVM with the subspace clustering method, our C-GPLVM can obtain more representative latent variable for clustering. Moreover, it can directly predict the new samples by introducing a back constraint in the model, thus being more suitable for big data learning tasks such as analysis of chaotic time series and so on. In the experiment, we compare it with the related GPLVMs and clustering algorithms. The experimental results show that the proposed model not only inherits the feature learning ability of GPLVM but also has superior clustering accuracy.

Funder

Project of Yulin Normal University Research

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference25 articles.

1. Kernel based nonlinear dimensionality reduction for microarray gene expression data analysis

2. Dictionary Learning Algorithms for Sparse Representation

3. Discriminatively boosted image clustering with fully convolutional auto-encoders;L. Fengfu;Pattern Recognition,2018

4. Probabilistic non-linear principal component analysis with Gaussian process latent variable models;N. D. Lawrence;Journal of Machine Learning Research,2005

5. A Global Geometric Framework for Nonlinear Dimensionality Reduction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3