Affiliation:
1. Music Collage, Harbin Normal University, Harbin 150000, China
Abstract
In this paper, the multifeature fusion music classification algorithm and its simulation results are studied by deep confidence networks, the multifeature fusion music database is established and preprocessed, and then features are extracted. The simulation is carried out using multifeature fusion music data. The multifeature fusion music preprocessing includes endpoint detection, framing, windowing, and pre-emphasis. In this paper, we extracted the rhythm features, sound quality features, and spectral features, including energy, cross-zero rate, fundamental frequency, harmonic noise ratio, and 12 statistical features, including maximum value, mean value, and linear slope. A total of 384-dimensional statistical features was extracted and compared with the classification ability of different emotional features. The deficiencies of the traditional classification algorithm are first studied, and then by introducing confusion, constructing multilevel classifiers, and tuning each level of the classifier, better recognition rates than traditional primary classification are obtained. This paper introduces label information for supervised training to further improve the features of multifunctional fusion music. Experiments show that this information has excellent performance in multifunctional fusion music recognition. The experiments compare the multilevel classifier with primary classification, and the multilevel classification with the primary classification and the classification performance is improved, and the recognition rate of the multilevel classification algorithm is also improved over the multilevel classification algorithm, proving that the excellent performance with multiple levels of classification.
Subject
Multidisciplinary,General Computer Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献