Simple Parameters from Complete Blood Count Predict In-Hospital Mortality in COVID-19

Author:

Bellan Mattia12,Azzolina Danila1ORCID,Hayden Eyal12ORCID,Gaidano Gianluca12ORCID,Pirisi Mario12ORCID,Acquaviva Antonio12ORCID,Aimaretti Gianluca12ORCID,Aluffi Valletti Paolo12ORCID,Angilletta Roberto3ORCID,Arioli Roberto12ORCID,Avanzi Gian Carlo12ORCID,Avino Gianluca12ORCID,Balbo Piero Emilio2ORCID,Baldon Giulia12ORCID,Baorda Francesca14ORCID,Barbero Emanuela12ORCID,Baricich Alessio12ORCID,Barini Michela2ORCID,Barone-Adesi Francesco1ORCID,Battistini Sofia12ORCID,Beltrame Michela12ORCID,Bertoli Matteo12ORCID,Bertolin Stephanie12ORCID,Bertolotti Marinella3ORCID,Betti Marta3ORCID,Bobbio Flavio2ORCID,Boffano Paolo12ORCID,Boglione Lucio14ORCID,Borrè Silvio4ORCID,Brucoli Matteo12ORCID,Calzaducca Elisa12ORCID,Cammarata Edoardo12ORCID,Cantaluppi Vincenzo12ORCID,Cantello Roberto12ORCID,Capponi Andrea2ORCID,Carriero Alessandro12ORCID,Casciaro Giuseppe Francesco12ORCID,Castello Luigi Mario12ORCID,Ceruti Federico12ORCID,Chichino Guido3ORCID,Chirico Emilio12,Cisari Carlo12ORCID,Cittone Micol Giulia12ORCID,Colombo Crizia12ORCID,Comi Cristoforo14ORCID,Croce Eleonora14ORCID,Daffara Tommaso12ORCID,Danna Pietro12ORCID,Della Corte Francesco12ORCID,De Vecchi Simona12ORCID,Dianzani Umberto12ORCID,Di Benedetto Davide12ORCID,Esposto Elia12ORCID,Faggiano Fabrizio1ORCID,Falaschi Zeno12ORCID,Ferrante Daniela1ORCID,Ferrero Alice12ORCID,Gagliardi Ileana12ORCID,Galbiati Alessandra12ORCID,Gallo Silvia14ORCID,Garavelli Pietro Luigi2ORCID,Gardino Clara Ada12ORCID,Garzaro Massimiliano12ORCID,Gastaldello Maria Luisa12ORCID,Gavelli Francesco12ORCID,Gennari Alessandra12ORCID,Giacomini Greta Maria12ORCID,Giacone Irene14ORCID,Giai Via Valentina12ORCID,Giolitti Francesca12ORCID,Gironi Laura Cristina12ORCID,Gramaglia Carla12ORCID,Grisafi Leonardo12ORCID,Inserra Ilaria12ORCID,Invernizzi Marco12ORCID,Krengli Marco12ORCID,Labella Emanuela12ORCID,Landi Irene Cecilia12ORCID,Landi Raffaella12ORCID,Leone Ilaria12ORCID,Lio Veronica12ORCID,Lorenzini Luca12ORCID,Maconi Antonio3ORCID,Malerba Mario14ORCID,Manfredi Giulia Francesca12ORCID,Martelli Maria12ORCID,Marzari Letizia12ORCID,Marzullo Paolo12ORCID,Mennuni Marco12ORCID,Montabone Claudia14ORCID,Morosini Umberto12ORCID,Mussa Marco3ORCID,Nerici Ilaria12ORCID,Nuzzo Alessandro12ORCID,Olivieri Carlo14ORCID,Padelli Samuel Alberto14ORCID,Panella Massimiliano1ORCID,Parisini Andrea3ORCID,Paschè Alessio12ORCID,Patrucco Filippo12ORCID,Patti Giuseppe12ORCID,Pau Alberto12ORCID,Pedrinelli Anita Rebecca12ORCID,Percivale Ilaria12ORCID,Ragazzoni Luca1ORCID,Re Roberta14ORCID,Rigamonti Cristina12ORCID,Rizzi Eleonora12ORCID,Rognoni Andrea12ORCID,Roveta Annalisa3ORCID,Salamina Luigia2ORCID,Santagostino Matteo12ORCID,Saraceno Massimo12ORCID,Savoia Paola12ORCID,Sciarra Marco3ORCID,Schimmenti Andrea3ORCID,Scotti Lorenza1ORCID,Spinoni Enrico12ORCID,Smirne Carlo12ORCID,Tarantino Vanessa12ORCID,Tillio Paolo Amedeo14ORCID,Tonello Stelvio1ORCID,Vaschetto Rosanna12ORCID,Vassia Veronica12ORCID,Zagaria Domenico12ORCID,Zavattaro Elisa12ORCID,Zeppegno Patrizia12ORCID,Zottarelli Francesca12ORCID,Sainaghi Pier Paolo12ORCID

Affiliation:

1. Università del Piemonte Orientale UPO, Novara, Italy

2. “AOU Maggiore della Carità”, Novara, Italy

3. Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy

4. “Sant’Andrea” Hospital, Vercelli, Italy

Abstract

Introduction. The clinical course of Coronavirus Disease 2019 (COVID-19) is highly heterogenous, ranging from asymptomatic to fatal forms. The identification of clinical and laboratory predictors of poor prognosis may assist clinicians in monitoring strategies and therapeutic decisions. Materials and Methods. In this study, we retrospectively assessed the prognostic value of a simple tool, the complete blood count, on a cohort of 664 patients ( F 260; 39%, median age 70 (56-81) years) hospitalized for COVID-19 in Northern Italy. We collected demographic data along with complete blood cell count; moreover, the outcome of the hospital in-stay was recorded. Results. At data cut-off, 221/664 patients (33.3%) had died and 453/664 (66.7%) had been discharged. Red cell distribution width (RDW) ( χ 2 10.4; p < 0.001 ), neutrophil-to-lymphocyte (NL) ratio ( χ 2 7.6; p = 0.006 ), and platelet count ( χ 2 5.39; p = 0.02 ), along with age ( χ 2 87.6; p < 0.001 ) and gender ( χ 2 17.3; p < 0.001 ), accurately predicted in-hospital mortality. Hemoglobin levels were not associated with mortality. We also identified the best cut-off for mortality prediction: a NL ratio > 4.68 was characterized by an odds ratio for in-hospital mortality OR = 3.40 (2.40-4.82), while the OR for a RDW > 13.7 % was 4.09 (2.87-5.83); a platelet count > 166,000 /μL was, conversely, protective (OR: 0.45 (0.32-0.63)). Conclusion. Our findings arise the opportunity of stratifying COVID-19 severity according to simple lab parameters, which may drive clinical decisions about monitoring and treatment.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3