A Heuristic Solution Approach to Order Batching and Sequencing for Manual Picking and Packing Lines considering Fatiguing Effect

Author:

Feng Xiaochun1ORCID,Hu Xiangpei2

Affiliation:

1. College of Economics and Management, Northwest A&F University, Yangling, Shaanxi 712100, China

2. Institute of System Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China

Abstract

In this research, we study an extended version of the joint order batching and scheduling optimization for manual vegetable order picking and packing lines with consideration of workers’ fatiguing effect. This problem is faced by many B2C fresh produce grocers in China on a daily basis which could severely decrease overall workflow efficiency in distribution center and customer satisfaction. In this order batching and sequencing problem, the setup time for processing each batch is volume-dependent and similarity dependent, as less ergonomic motion is needed in replenishing and picking similar orders. In addition, each worker’s fatiguing effect, usually caused by late shift and repetitive operation, which affects order processing times, is assumed to follow a general form of logistic growth with respect to the start time of order processing. We develop a heuristic approach to solve the resultant NP-hard problem for minimization of the total completion time. For order batching, a revised similarity index takes into account not only the number of common items in any two orders but also the proportion of these items based on the vegetable order feature. To sequence batches, the genetic algorithm is adapted and improved with proposed several efficient initialization and precedence rules. Within each batch, a revised nondecreasing item quantity algorithm is used. The performance of the proposed heuristic solution approach is evaluated using numerical instances generated from practical warehouse operations of our partnering B2C grocer. The efficiency of the proposed heuristic approach is demonstrated.

Funder

Annual Social Science Foundation Project of Shaanxi Province

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3