Reconstruction of Generative Adversarial Networks in Cross Modal Image Generation with Canonical Polyadic Decomposition

Author:

Ma Ruixin1ORCID,Lou Junying1ORCID,Li Peng1ORCID,Gao Jing1ORCID

Affiliation:

1. School of Software, Dalian University of Technology, 116024, China

Abstract

Generating pictures from text is an interesting, classic, and challenging task. Benefited from the development of generative adversarial networks (GAN), the generation quality of this task has been greatly improved. Many excellent cross modal GAN models have been put forward. These models add extensive layers and constraints to get impressive generation pictures. However, complexity and computation of existing cross modal GANs are too high to be deployed in mobile terminal. To solve this problem, this paper designs a compact cross modal GAN based on canonical polyadic decomposition. We replace an original convolution layer with three small convolution layers and use an autoencoder to stabilize and speed up training. The experimental results show that our model achieves 20% times of compression in both parameters and FLOPs without loss of quality on generated images.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference39 articles.

1. Generating images from captions with attention;E. Mansimov

2. Pixel recurrent neural networks;A. van den Oord

3. Conditional image generation with PixelCNN decoders;A. van den Oord;Advances in Neural Information Processing Systems,2016

4. Generative adversarial text to image synthesis;S. Reed;Proceedings of Machine Learning Research,2016

5. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3