Effects and Mechanisms of Cutting Upper Thoracic Sympathetic Trunk on Ventricular Rate in Ambulatory Canines with Persistent Atrial Fibrillation

Author:

Cai Jie1,Tang Min1,Liu Hao1,Ding Shiao1,Lu Rongxin1,Wang Wei1,Ma Nan1,Mei Ju1ORCID,Jiang Zhaolei1ORCID

Affiliation:

1. Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China

Abstract

Objective. The purpose is to observe the effects and neural mechanism of cutting upper thoracic sympathetic trunk (TST) on the ventricular rate (VR) during persistent atrial fibrillation (AF). Methods. Twelve beagle dogs were halving to the control group and experimental group, 6 dogs for each group. Both groups were performed with left atrial rapid pacing (600 beats/min) to induce sustained AF. The experimental group underwent cutting upper TST  after a sustained AF model was established, while the control group received thoracotomy without cutting TST. Bilateral stellate ganglion (SG) and left atrial myocardium were harvested for tyrosine-hydroxylase (TH) immunohistochemical staining. Results. After cutting upper TST for 30 minutes, the average VR was 121.5 ± 8.7 bpm (95% CI, 114.8 to 128.0) in the experimental group, which was significantly slower than that of the control group (144.5 ± 4.2 bpm (95% CI, 141.5 to 148.0)) ( P < 0.001 ). After cutting upper TST for 1 month, the average VR of the experimental group (106.5 ± 4.9 bpm (95% CI, 102.0 to 110.0)) was also significantly slower versus that of the control group (139.2 ± 5.6 bpm (95% CI, 135.0 to 143.8)) ( P < 0.001 ). Compared with the control group, both left stellate ganglion (LSG) and right stellate ganglion (RSG) of the experimental group caused neural remodeling characterized by decreased ganglionic cell density and reduced TH staining. TH-positive component was significantly decreased in the left atrium of the experimental group compared with the control group. Conclusions. Cutting upper TST could reduce fast VR during persistent AF. Cutting upper TST induced bilateral SG neural remodeling and reduced sympathetic nerve density in the left atrium, which could contribute to the underlying mechanism of VR control during AF.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3