A Multiscale Structural Analysis of Soft and Hard Coal Deposits in Deep High-Gas Coal Seams

Author:

Yuan Anying1ORCID,Fu Guangsheng2,Hou Junling13

Affiliation:

1. State Key Laboratory of Mining-Induced Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, China

2. Shandong Bureau of China Metallurgical Geology Bureau, Qingdao 266109, China

3. Panzhihua University, Panzhihua 617000, China

Abstract

In recent years, with the increases in coal mining depths, the risk of coal seam outburst occurrences has increased. Therefore, it is of major significance to study the multiscale structures of soft and hard coal deposits in order to prevent and control the coal and gas outbursts. In this research investigation, soft and hard coal multiscale structures were comprehensively examined using various laboratory methods. The results revealed the following: (1) From a macrostructural aspect, the physical and mechanical properties of the soft coal were weaker than those of the hard coal. It was found that the majority of the examined specimens were characterized by scaly structures without blocks larger than 50 mm. The hard coal was observed to be mainly massive with only a small part being clastic. Therefore, the structural characteristics were considered to be stable. (2) From a microstructural perspective, the surfaces of the soft coal specimens were observed to be rough. The pores were found to be more developed, with the edge of pores being mainly hackly. At the same time, fractures were also relatively developed, showing good connectivity. (3) From a micropore structural perspective, it was found that the BET-specific surface areas and BJH-specific surface areas of the soft coal specimens were higher than those of the hard coal specimens, which indicated that the gas adsorption and diffusion migration abilities of the soft coal were greater than those of the hard coal. (4) It was suggested from the study results that the ventilation and gas extraction processes should be strengthened in the mining activities of coal seams with high, soft stratification content. At the same time, the methods used for water injection modification should be enhanced in order to improve the mechanical stability of soft coal. Consequently, the instantaneous released gases will be decelerated, and the occurrences of coal and gas outburst events in mine working faces can be prevented.

Funder

Natural Science Foundation of Anhui Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3