Creep Properties and Constitutive Model of Salt Rock

Author:

Zhang Qiang12ORCID,Song Zhanping12ORCID,Wang Junbao12ORCID,Zhang Yuwei12ORCID,Wang Tong12ORCID

Affiliation:

1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China

2. Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an 710055, China

Abstract

Due to the advantages of low porosity, low permeability, high ductility, and excellent capacities for creep and damage self-healing, salt rock is internationally considered as the ideal medium for underground storage of energy and disposal of radioactive waste. As one of the most important mechanical properties of salt rock, creep properties are closely related to the long-term operation stability and safety of salt rock underground storage cavern. A comprehensive review on the creep properties and constitutive model of salt rock is put forward in this paper. The opinions and suggestions on the research priority and direction of salt rock's mechanical properties in the future are put forward: (1) permeability variation of salt rock under the coupling effect of temperature and stress; (2) damage mechanism and evolution process under the effect of creep-fatigue interaction and low frequency cyclic loading; (3) microdeformation mechanisms of salt rock and the relationship between microstructure variations and macrocreep behavior during creep process; (4) the establishment of the creep damage constitutive model with simple form, less parameters, easy application, and considering the damage self-healing ability of salt rock simultaneously.

Funder

Housing and Urban-Rural Construction Science and Technology Planning Project of Shaanxi Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3