A Simple Estimation of Coupling Loss Factors for Two Flexible Subsystems Connected via Discrete Interfaces

Author:

Zhang Jun12,Ji Lin3ORCID,Huang Zhenyu4ORCID,Zhang Pingping3ORCID,Wang Wei4ORCID

Affiliation:

1. Changan Auto Global R&D Center, Chongqing, China

2. State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing, China

3. School of Mechanical Engineering, Shandong University, Jinan, China

4. Institute of Intelligent Mechatronics Research, Shanghai Jiao Tong University, Shanghai, China

Abstract

A simple formula is proposed to estimate the Statistical Energy Analysis (SEA) coupling loss factors (CLFs) for two flexible subsystems connected via discrete interfaces. First, the dynamic interactions between two discretely connected subsystems are described as a set of intermodal coupling stiffness terms. It is then found that if both subsystems are of high modal density and meanwhile the interface points all act independently, the intermodal dynamic couplings become dominated by only those between different subsystem mode sets. If ensemble- and frequency-averaged, the intermodal coupling stiffness terms can simply reduce to a function of the characteristic dynamic properties of each subsystem and the subsystem mass, as well as the number of interface points. The results can thus be accommodated within the theoretical frame of conventional SEA theory to yield a simple CLF formula. Meanwhile, the approach allows the weak coupling region between the two SEA subsystems to be distinguished simply and explicitly. The consistency and difference of the present technique with and from the traditional wave-based SEA solutions are discussed. Finally, numerical examples are given to illustrate the good performance of the present technique.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3