An Improved Stacking Model for Equipment Spare Parts Demand Forecasting Based on Scenario Analysis

Author:

Yang Yi12,Liu Wei1ORCID,Zeng Tingting1,Guo Linhan1ORCID,Qin Yong3ORCID,Wang Xue4

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

2. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

3. Peng Cheng Laboratory, Shenzhen 518000, China

4. Binzhou Polytechnic, Binzhou 256603, China

Abstract

The purpose of spare parts management is to maximize the system’s availability and minimize the economic costs. The problem of cost availability trade-off leads to the problem of spare parts demand prediction. Accurate and reasonable spare parts demand forecasting can realize the balance between cost and availability. So, this paper focuses on spare parts management during the equipment normal operation phase and tries to forecast the demand of spare parts in a specific inspection and replacement cycle. Firstly, the equipment operation and support scenarios are analyzed to obtain the supportability data related to spare parts requirements. Then, drawing on the idea of ensemble learning, a new feature selection method has been designed, which can overcome the limitations of a single feature selection method. In addition, an improved stacking model is proposed to predict the demand for spare parts. In the traditional stacking model, there are two levels of learning, base-learning, and meta-learning, in which the outputs of base learners are taken as the input of the meta learner. However, the proposed model brings the initial feature together with the output of the base learner layer as the input of the meta learner layer. And experiments have shown that the performance of the improved stacking model is better than the base learners and the traditional stacking model on the same data set.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3