Experimental Investigation on Seismic Behaviours of Reinforced Concrete Columns under Simulated Acid Rain Environment

Author:

Zheng Hao12ORCID,Zheng Shansuo12ORCID,Zhang Yixin12ORCID,Cai Yonglong13,Ming Ming12,Zhou Jingliang12

Affiliation:

1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China

2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi'an 710055, China

3. Arup, Wuhan 430022, China

Abstract

The purpose of this paper was to systematically investigate the influence of acid rain environments on the seismic behaviour of a reinforced concrete (RC) column. Six RC column specimens with shear span ratios of 2.84 were tested under low cyclic reversed loads after being subjected to accelerated corrosion tests in an artificial climate. The corrosion level and stirrup ratio were used as the control variables. The corrosion ratios of the longitudinal rebars ranged from 0 to 13.17%, and the corrosion ratios of the stirrups varied from 0 to 6.75%. The seismic behaviours of the column specimens were analysed with respect to visual damage, failure mode, hysteresis behaviour, load-carrying capacity, deformation capacity, stiffness degradation, and energy dissipation behaviour. The test results showed that the appearance characteristics of the six column specimens exhibited varying degrees of visual damage as a result of the simulated acid rain exposure. All six specimens were dominated by similar flexural-shear failures under low cyclic reversed loads, regardless of the distinctions in the corrosion levels or stirrup ratios. For the specimens with the same ratios of stirrup, as the corrosion level increased, the load-carrying capacity, deformation capacity, stiffness, and energy dissipation capacity were continuously decreased. For the specimens with the same levels of corrosion, the higher the stirrup ratio was, the stronger the restraint effect of the stirrups on the concrete, and the seismic behaviours of the specimens were obviously improved.

Funder

National Science and Technology Support Program

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3