Quantifying Spillover Risk with an Integrated Bat-Rabies Dynamic Modeling Framework

Author:

Janoušková Eva1ORCID,Rokhsar Jennifer1ORCID,Jara Manuel2ORCID,Entezami Mahbod1ORCID,Horton Daniel L.1ORCID,Dias Ricardo Augusto3ORCID,Machado Gustavo2ORCID,Prada Joaquín M.1ORCID

Affiliation:

1. School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK

2. Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA

3. Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil

Abstract

Vampire bat-transmitted rabies has recently become the leading cause of rabies mortality in both humans and livestock in Latin America. Evaluating risk of transmission from bats to other animal species has thus become a priority in the region. An integrated bat-rabies dynamic modeling framework quantifying spillover risk to cattle farms was developed. The model is spatially explicit and is calibrated to the state of São Paulo, using real roost and farm locations. Roost and farm characteristics, as well as environmental data through an ecological niche model, are used to modulate rabies transmission. Interventions aimed at reducing risk in roosts (such as bat culling or vaccination) and in farms (cattle vaccination) were considered as control strategies. Both interventions significantly reduce the number of outbreaks in farms and disease spread (based on distance from source), with control in roosts being a significantly better intervention. High-risk areas were also identified, which can support ongoing programs, leading to more effective control interventions.

Funder

University Global Partnership Network Research Collaboration Fund

Publisher

Hindawi Limited

Subject

General Veterinary,General Immunology and Microbiology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3