Comprehensive Analysis of Spectral Mismatch Factor for Solar Cells Based on In Situ Observation of Aerosol Optical Depth Spectra and Solar Spectral Irradiance in Korea

Author:

Kim Chang Ki12,Kim Hyun-Goo12ORCID,Kang Yong-Heack1,Oh Myeongchan1

Affiliation:

1. Renewable Energy Big Data Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

2. Department of Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

Abstract

The spectral mismatch factor for solar cells quantifies their relative performance in converting solar irradiance between the incident and reference solar spectra into electricity. This study attempted to evaluate the spectral mismatch factor for eight types of solar cells and investigate their sensitivity to changes in the solar spectral irradiance, which is dependent on the aerosol optical properties in a clear sky. Copper indium gallium diselenide cells have the highest mean value of the spectral mismatch factor, implying that they are less sensitive to changes in the solar spectral irradiance. In contrast, perovskite and amorphous silicon cells are more sensitive to atmospheric conditions, with broader distributions of the spectral mismatch factor values. Additionally, our study found that heterojunction with intrinsic thin-layer cells has the highest substantial efficiency, considering the nameplate efficiency. The spectral mismatch factor decreased with increasing aerosol optical depth at 500 nm and was proportional to the humidity. The effects of aerosol optical properties on the spectral mismatch factor for different solar cells were clarified using clustering analysis and back-trajectory modeling results. In the present study, the aerosol optical depth spectra were found to be more important in determining the spectral mismatch factor than the aerosol optical depth at 500 nm. This study recommends further research on the relationship between the aerosol optical properties and solar spectral irradiance to better predict or estimate the spectral mismatch factor in solar power forecasting.

Funder

Korea Institute of Energy Research

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3