NDVI Variation and Its Responses to Climate Change on the Northern Loess Plateau of China from 1998 to 2012

Author:

Ning Tingting12,Liu Wenzhao1,Lin Wen12,Song Xiaoqiang3

Affiliation:

1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China

2. University of the Chinese Academy of Sciences, Beijing 100049, China

3. Soil and Water Conservation Bureau of Shaanxi Province, Xian, Shaanxi 710004, China

Abstract

This study analyzed temporal and spatial changes of normalized difference vegetation index (NDVI) on the northern Loess Plateau and their correlation with climatic factors from 1998 to 2012. The possible impacts of human activities on the NDVI changes were also explored. The results showed that (1) the annual maximum NDVI showed an upward trend. The significantly increased NDVI and decreasing severe desertification areas demonstrate that the vegetation condition improved in this area. (2) Over the past decades, climate tended to be warmer and drier. However, the mean temperature significantly decreased and precipitation slightly increased from 1998 to 2012, especially in spring and summer, which was one of the major reasons for the increase in the annual maximum NDVI. Compared to temperature, vegetation was more sensitive to precipitation changes in this area. The NDVI and annual precipitation changes were highly synchronous over the first half of the year, while a 1-month time lag existed between the two variables during the second half of the year. (3) Positive human activities, including the “Grain for Green” program and successful environmental treatments at coal mining bases, were some of the other factors that improved the vegetation condition.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3