Insecticide Resistance Associated with kdr Mutations in Aedes albopictus: An Update on Worldwide Evidences

Author:

Auteri Michelangelo1ORCID,La Russa Francesco1ORCID,Blanda Valeria1ORCID,Torina Alessandra1

Affiliation:

1. Laboratory of Entomology and Control of Environmental Vectors, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy

Abstract

Insecticide resistance is an increasing problem worldwide that limits the efficacy of control methods against several pests of health interest. Among them, Aedes albopictus mosquitoes are efficient vectors of relevant pathogens causing animal and human diseases worldwide, including yellow fever, chikungunya, dengue, and Zika. Different mechanisms are associated in conferring resistance to chemical insecticides. One of the most widespread and analysed mechanisms is the knockdown resistance (kdr) causing resistance to DDT and pyrethroids. The mechanism is associated with mutations in the voltage sensitive sodium channel, which is involved in beginning and propagation of action potentials in nervous cells. The mechanism was originally discovered in the housefly and then it was found in a large number of arthropods. In 2011, a kdr associated mutation was evidenced for the first time in A. albopictus and afterward several evidences were reported in the different areas of the world, including China, USA, Brazil, India, and Mediterranean Countries. This review aims to update and summarize current evidences on kdr in A. albopictus, in order to stimulate further researches to analyse in depth A. albopictus resistance status across the world, especially in countries where the presence of this vector is still an emerging issue. Such information is currently needed given the well-known vector role of A. albopictus in the transmission of severe infectious diseases. Furthermore, the widespread use of chemical insecticides for control strategies against A. albopictus progressively lead to pressure selection inducing the rise of insecticide resistance-related mutations in the species. Such event is especially evident in some countries as China, often related to a history of uncontrolled use of chemical insecticides. Thus, a careful picture on the diffusion of kdr mutations worldwide represents a milestone for the implementation of control plans and the triggering of novel research on alternative strategies for mosquito-borne infections.

Funder

Ministero della Salute

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3