Effect of Guide Vanes on Flow and Vibroacoustic in an Axial-Flow Pump

Author:

Li Guoping1,Chen Eryun23ORCID,Yang Ailing2ORCID,Xie Zhibin2,Zhao Gaiping4

Affiliation:

1. Shanghai Marine Equipment Research Institute, Shanghai 200031, China

2. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

3. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China

4. School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

An effect of guide-vane numbers on pressure fluctuations and structural vibroacoustics induced by unsteady flow is performed by a hybrid numerical method. A 3D flow field is simulated in axial-flow pump with four impeller blades, in which three diffuser models with 5, 7, and 9 vanes are devised to match, respectively. A full scale structural vibroacoustics coupled model is solved using LMS acoustics software. The results show that the blade-passing frequency (BPF) is dominated frequency of the vibration acceleration of pump, which is consistent with frequency spectral characteristics of pressure pulsation. The unsteady pressure fluctuating becomes strong as the flow discharge decreases from 1.0Qv to 0.6Qv, the circumferential unsteady behavior of which is more severe due to flow nonuniformity induced by the suction elbow at partial operation. Generally, the pressure fluctuating increases slightly when the flow discharge increases from 1.0Qv to 1.3Qv. Moreover, pressure fluctuations amplitude on the pump with 9-vane diffuser is small relative to other two models and the vibrating accelerating and radiation sound field at BPF are also slight relatively, which indicates that appropriate guide-vane numbers contribute to suppress pressure fluctuations and vibroacoustics in axial-flow pump. The conclusions in the present paper can provide theoretical guidance for low vibration pump design.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3