A Pilot Study of Detecting Individual Sleep Apnea Events Using Noncontact Radar Technology, Pulse Oximetry, and Machine Learning

Author:

Toften Ståle1ORCID,Kjellstadli Jonas T.1ORCID,Tyvold Stig S.2ORCID,Moxness Mads H. S.23ORCID

Affiliation:

1. Department of Data Science and Research, VitalThings AS, Trondheim, Norway

2. Aleris Hospital Solsiden, Trondheim, Norway

3. Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Norway

Abstract

The gold standard for assessing sleep apnea, polysomnography, is resource intensive and inconvenient. Thus, several simpler alternatives have been proposed. However, validations of these alternatives have focused primarily on estimating the apnea-hypopnea index (apnea events per hour of sleep), which means information, clearly important from a physiological point of view such as apnea type, apnea duration, and temporal distribution of events, is lost. The purpose of the present study was to investigate if this information could also be provided with the combination of radar technology and pulse oximetry by classifying sleep apnea events on a second-by-second basis. Fourteen patients referred to home sleep apnea testing by their medical doctor were enrolled in the study (6 controls and 8 patients with sleep apnea; 4 mild, 2 moderate, and 2 severe) and monitored by Somnofy (radar-based sleep monitor) in parallel with respiratory polygraphy. A neural network was trained on data from Somnofy and pulse oximetry against the polygraphy scorings using leave-one-subject-out cross-validation. Cohen’s kappa for second-by-second classifications of no event/event was 0.81, or almost perfect agreement. For classifying no event/hypopnea/apnea and no event/hypopnea/obstructive apnea/central apnea/mixed apnea, Cohen’s kappa was 0.43 (moderate agreement) and 0.36 (fair agreement), respectively. The Bland-Altman 95% limits of agreement for the respiratory event index (apnea events per hour of recording) were -8.25 and 7.47, and all participants were correctly classified in terms of sleep apnea severity. Furthermore, the results showed that the combination of radar and pulse oximetry could be more accurate than the two technologies separately. Overall, the results indicate that radar technology and pulse oximetry could reliably provide information on a second-by-second basis for no event/event which could be valuable for management of sleep apnea. To be clinically useful, a larger study is necessary to validate the algorithm on a general population.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference31 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitigating the class imbalance effect in Sleep Apnea Classification;2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON);2023-05-01

2. Non-contact determination of sleep/wake state in residential environments by neural network learning of microwave radar and electroencephalogram–electrooculogram measurements;Building and Environment;2023-04

3. OBSTRÜKTİF UYKU APNESİ TESPİTİNDE POLİSOMNOGRAFİYE ALTERNATİF YENİ YÖNTEMLER;Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi;2023-03-15

4. Feasibility Study for Apnea Screening in Patients' Homes Using Radar and Machine Learning Method;2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering (BIBE);2022-11

5. Accurate contactless sleep apnea detection framework with signal processing and machine learning methods;Methods;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3