An Effective and Novel Approach for Brain Tumor Classification Using AlexNet CNN Feature Extractor and Multiple Eminent Machine Learning Classifiers in MRIs

Author:

Sarkar Alok1ORCID,Maniruzzaman Md.1ORCID,Alahe Mohammad Ashik1ORCID,Ahmad Mohiuddin2ORCID

Affiliation:

1. Electronics and Communication Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh

2. Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh

Abstract

A brain tumor is an uncontrolled malignant cell growth in the brain, which is denoted as one of the deadliest types of cancer in people of all ages. Early detection of brain tumors is needed to get proper and accurate treatment. Recently, deep learning technology has attained much attraction to the physicians for the diagnosis and treatment of brain tumors. This research presents a novel and effective brain tumor classification approach from MRIs utilizing AlexNet CNN for separating the dataset into training and test data along with extracting the features. The extracted features are then fed to BayesNet, sequential minimal optimization (SMO), Naïve Bayes (NB), and random forest (RF) classifiers for classifying brain tumors as no-tumor, glioma, meningioma, and pituitary tumors. To evaluate our model’s performance, we have utilized a publicly available Kaggle dataset. This paper demonstrates ROC, PRC, and cost curves for realizing classification performance of the models; also, performance evaluating parameters, such as accuracy, sensitivity, specificity, false positive rate, false negative rate, precision, f-measure, kappa statistics, MCC, ROC area, and PRC area, have been calculated for four testing options: the test data itself, cross-validation fold (CVF) 4, CVF 10, and percentage split (PS) 34% of the test data. We have achieved 88.75%, 98.15%, 86.25% and 100% of accuracy using the AlexNet CNN+BayesNet, AlexNet CNN+SMO, AlexNet CNN+NB, and AlexNet CNN+RF models, respectively, for the test data itself. The results imply that our approach is outstanding and very effective.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3