Development and Performance Evaluation of Biomass-Based Injera Baking Gasifier Stove: A Case Study of Clean Cooking Technologies in Ethiopia

Author:

Ebissa Dawit Tessema12ORCID,Getahun Eshetu13ORCID

Affiliation:

1. Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia

2. Ethiopian Textile and Fashion Design Institute, Bahir Dar University, Bahir Dar, Ethiopia

3. Chemical Engineering Department, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia

Abstract

The primary energy source in Ethiopia is biomass. Over 80% of Ethiopians are rural dwellers who rely on biomass energy for lighting and cooking. In most parts of Ethiopia, injera is traditionally baked using an open fire, a three stone, or a device using woody biomass. These baking stoves have very low efficiency and consume a significant amount of fuel. Moreover, these traditional baking stoves have released large amounts of indoor air pollution, which has led to different types of health-related risks, especially for women and children in the country. Therefore, the aim of this study was to investigate efficient and fuel-saving injera baking technologies. Rigorously, an injera baking gasifier stove was designed, developed, and characterized in detail through water boiling and control cooking test methods. The indoor air pollution level was evaluated using particulate matter measuring instruments. The result indicated that the developed gasifier stove had a thermal efficiency of 21.8%. Furthermore, an 86% fuel savings performance was demonstrated by the controlled cooking test for the injera baking gasifier stove. The average emission concentrations of particulate matter and carbon monoxide were 608 µg/m3 and 9 ppm, respectively, during indoor air pollution determination. The study showed that injera baking gasifier stoves are a promising cooking technology for societies where baking is mostly dependent on traditional biomass fuel.

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3