Automated Classification of Lung Cancer Types from Cytological Images Using Deep Convolutional Neural Networks

Author:

Teramoto Atsushi1ORCID,Tsukamoto Tetsuya2,Kiriyama Yuka2,Fujita Hiroshi3

Affiliation:

1. School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan

2. School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi 470-1192, Japan

3. Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan

Abstract

Lung cancer is a leading cause of death worldwide. Currently, in differential diagnosis of lung cancer, accurate classification of cancer types (adenocarcinoma, squamous cell carcinoma, and small cell carcinoma) is required. However, improving the accuracy and stability of diagnosis is challenging. In this study, we developed an automated classification scheme for lung cancers presented in microscopic images using a deep convolutional neural network (DCNN), which is a major deep learning technique. The DCNN used for classification consists of three convolutional layers, three pooling layers, and two fully connected layers. In evaluation experiments conducted, the DCNN was trained using our original database with a graphics processing unit. Microscopic images were first cropped and resampled to obtain images with resolution of 256 × 256 pixels and, to prevent overfitting, collected images were augmented via rotation, flipping, and filtering. The probabilities of three types of cancers were estimated using the developed scheme and its classification accuracy was evaluated using threefold cross validation. In the results obtained, approximately 71% of the images were classified correctly, which is on par with the accuracy of cytotechnologists and pathologists. Thus, the developed scheme is useful for classification of lung cancers from microscopic images.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3