Technical Potential of Biogas Technology to Substitute Traditional Fuel Sources and Chemical Fertilizers and Mitigate Greenhouse Gas Emissions: The Case of Arba-Minch Area, South Ethiopia

Author:

Tekle Tariku1,Sime Getachew12ORCID

Affiliation:

1. Department of Biology, Hawassa University, Hawassa, Ethiopia

2. Center for Ethiopian Rift Valley Studies, Hawassa University, Hawassa, Ethiopia

Abstract

A study was conducted in South Ethiopia with the aim of assessing the technical potential of biogas energy in replacing traditional bioenergy and chemical fertilizers and mitigating greenhouse gas emissions. A household survey with both a quantitative and qualitative approach was employed for data collection. Primary data were gathered from 182 biogas adopters as well as 10 key informants and three group discussions. Secondary data were also collected from different sources. The average biogas production potential of installed biogas plants was 205 m3 per day. The average reduction in use of firewood, charcoal, dung cakes, and crop residues due to biogas adoption was 66%, 72%, 68%, and 89%, respectively. The use of bio-slurry as an organic fertilizer reduced the quantity of chemical fertilizers used by more than 50% per household per year. The reduction in the quantity of biofuel consumption reduced the volume of greenhouse gas emissions by 418 tons of carbon dioxide equivalents per household per year. If the reduced firewood and charcoal use reduced the felling of live trees, this could potentially conserve 45 ha of forest per household per year. Therefore, biogas energy could help reduce the anthropogenic pressure on forest resources by addressing the major drivers of deforestation and forest degradation.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3