Road Sign Recognition Method Based on Segmentation and Attention Mechanism

Author:

Chen Tianao1,Chen Aotian2ORCID

Affiliation:

1. University of Leeds, Southwest Jiaotong University, Chengdu 610000, China

2. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

Abstract

With the development of autonomous driving, low-cost visual perception solutions have become a current research hotspot. However, the performance of the pure visual scheme in unfriendly environments such as low light, rain and fog, and complex traffic scenes has a large room for improvement. Moreover, with the development and application of deep learning, the balance between the accuracy and real-time performance of deep learning models is a difficult problem for current research. Aiming at the problems of large differences in the target scale of pavement signs and the difficulty of balancing model accuracy and real-time performance, a ground semantic cognition method based on segmentation and attention mechanism is proposed. The lightweight semantic segmentation model ERFNet is used to realize the semantic segmentation of pavement signs and the instantiation of lane lines. When only lane line detection is required, the prediction branch of lane line existence is introduced based on the lightweight semantic segmentation model ERFNet to realize lane line instantiation cognition, solve the imbalance of positive and negative lane line detection samples, and obtain the final lane line detection result via postprocessing. Deep features were used to guide shallow layers to extract semantic features at high resolution, and the model performance was further optimized without increasing the inference cost.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3