miR-29c Inhibits Renal Interstitial Fibrotic Proliferative Properties through PI3K-AKT Pathway

Author:

Feng Weifeng1,Xie Huijun2,Li Jiong3,Yan Xianxin2,Zhu Shiping1ORCID,Sun Shengyun1ORCID

Affiliation:

1. Department of Traditional Chinese Medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China

2. College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China

3. Department of Anatomy, College of Medicine, Jinan University, Guangzhou, Guangdong, China

Abstract

Renal fibrosis, in particular tubulointerstitial fibrosis, which is characterized by an increased extracellular matrix (ECM) formation and development in the interstitium, is the common end pathway for nearly all progressive kidney disorders. One of the sources for this matrix is the epithelial to mesenchymal transition (EMT) from the tabular epithelium. The driving force behind it is some profibrotic growth factors such as transforming growth factor-β (TGF-β) which is responsible for the formation of collagen in renal fibrosis. miR-29c, which is an antifibrotic microRNA, downregulates renal interstitial fibrosis by downregulating the TGF-β and collagen. However, it is not known whether miR-29c mediates the TGF-β1-driven PI3K-Akt pathway and Col-1 triggering within NRK-52E cultures. The main objective of this investigation was to examine the influence of miR-29c on the downregulation of the TGF-β1-driven PI3K-Akt pathway and Col-1 triggering in NRK-52E cultures. This study revealed that miR-29c inhibited TGF-β1 expression in NRK-52E cell cultures. Overexpression of miR-29c significantly inhibits NRK-52E culture proliferation mediated by TGF-β1. miR-29c inhibited the expression of Col-1 and decreased PI3K/Akt phosphorylation. These findings revealed a novel mechanism by which miR29c inhibits the proliferation of renal interstitial fibrotic cultures by downregulating the PI3k-Akt pathway, which is controlled by TGF-β1.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3