Analysis of Reciprocal Thermal Conductivity on Free Convection Flow along a Wavy Vertical Surface

Author:

Saha Tinni1,Parveen Nazma1,Islam Tarikul2ORCID

Affiliation:

1. Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

2. Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh

Abstract

The effects of thermal conductivity which depend on temperature are conversely proportional with the linear function of temperature on free convective flow where the fluid is viscous and incompressible along a heated uniform and the vertical wavy surface has been examined in this study. The boundary layer equations with the associated boundary conditions that govern the flow are converted into a nondimensional form by using an appropriate transformation. In the domain of a vertical plate that is flat, the resulting method of nonlinear PDEs is mapped and then worked out numerically by applying the implicit central finite difference technique with Newton’s quasilinearization method, and the block Thomas algorithm is well known as the Keller-box method. The outputs are obtained in the terms of the heat transferring rate, the frictional coefficient of skin, the isotherms, and streamlines. The outcomes showed that the local heat transferring rate, the local skin friction coefficient, the temperature, and the velocity all are decreasing, and both the thermal layer of boundary and velocity become narrower with the rising values of reciprocal variation of temperature-dependent thermal conductivity. On the other hand, the friction coefficient of skin, the velocity, and the temperature decrease where the friction coefficient of skin and velocity decrease by 43% and 64%, respectively, but the heat transfer rate increases by 61% approximately, and both the boundary layer thermal and velocity become thinner when the Prandtl number increases.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Reference43 articles.

1. Magnetohydrodynamic free convection along a vertical wavy surface;K. C. A. Alam;International Journal of Applied Mechanics and Engineering,1997

2. MHD free convection flow in open-ended vertical porous channels

3. Magnetic effect on over back convection through vertical stratum;N. Ahmed

4. Joule Heating Effect on the Coupling of Conduction with Magnetohydrodynamic Free Convection Flow from a Vertical Flat Plate

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3