Affiliation:
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
3. Zhoushan Agricultural and Forestry Institute of Zhejiang, Zhoushan 316021, China
Abstract
Artificial upwelling, artificially pumping up nutrient-rich ocean waters from deep to surface, is increasingly applied to stimulating phytoplankton activity. As a proxy for the amount of phytoplankton present in the ocean, the concentration of chlorophyll a (chl-a) may be influenced by water physical factors altered in artificial upwelling processes. However, the accuracy and convenience of measuring chl-a are limited by present technologies and equipment. Our research intends to study the correlations between chl-a concentration and five water physical factors, i.e., salinity, temperature, depth, dissolved oxygen (DO), and pH, possibly affected by artificial upwelling. In this paper, seven models are presented to predict chl-a concentration, respectively. Two of them are based on traditional regression algorithms, i.e., multiple linear regression (MLR) and multivariate quadratic regression (MQR), while five are based on intelligent algorithms, i.e., backpropagation-neural network (BP-NN), extreme learning machine (ELM), genetic algorithm-ELM (GA-ELM), particle swarm optimization-ELM (PSO-ELM), and ant colony optimization-ELM (ACO-ELM). These models provide a quick prediction to study the concentration of chl-a. With the experimental data collected from Xinanjiang Experiment Station in China, the results show that chl-a concentration has a strong correlation with salinity, temperature, DO, and pH in the process of artificial upwelling and PSO-ELM has the best overall prediction ability.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献