Design and Characterization of Endostatin-Loaded Nanoparticles for In Vitro Antiangiogenesis in Squamous Cell Carcinoma

Author:

Adeyemi Samson A.1,Choonara Yahya E.1ORCID,Kumar Pradeep1ORCID,du Toit Lisa C.1,Pillay Viness1ORCID

Affiliation:

1. Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa

Abstract

The aim of this study is to effectively enhance antitumor activities of endostatin by preparing polymeric nanocarriers. NMR and FT-IR spectra confirmed the successful grafting of the CHT-g-PEI and CHT-g-PEI-PEG-NH2 conjugates. SEM micrographs confirmed the shape of endostatin-loaded nanoparticles to be spherical while both TEM and zeta size results showed nanoparticle’s average size to be 100.6 nm having a positively charged surface with zeta potential of 7.95 mV. The concentrations of CHT and TPP as well as the changing pH conditions account for the increased swelling pattern of endostatin-loaded nanoparticles and influenced endostatin release in vitro. PEI increased the overall amine protonation while PEG aggravated endostatin encapsulation and release. Nanoparticles swell and release endostatin at acidic tumor pH of 6.8 compared to physiological pH of 7.4. The native CHT-g-PEI-PEG-NH2 conjugate showed high cytocompatibility above 80% cell viability across tested formulations. Endostatin-loaded nanoparticles showed a significant reduction in cell viability across tested formulations, with 5.32% cell death at 125 μg/mL and 13.36% at 250 μg/mL following 24 hours’ incubation period. Interestingly, more than a fourfold (61.68%) increment in cytotoxicity was observed at nanoparticle concentration of 1000 μg/mL. It was concluded that CHT-g-PEI-PEG-NH2 is an effective cargo for endostatin delivery with antiangiogenic effect in squamous cell carcinoma.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3