Affiliation:
1. Department of Physical Science and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
2. Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
Abstract
Climate change has adversely influenced many activities. It has increased the intensified precipitation events in some places and decreased the precipitation in some other places. In addition, some research studies revealed that the climate change has moved seasons in the temporal scale. Therefore, the changes can be seen in both spatial and temporal scales. Thus, analyzing climate change in the localized environments is highly essential. Rainfall trend analysis in a localized catchment can improve many aspects of water resource management not only to the catchment itself but also to some of the related other catchments. This research is carried to identify the rainfall trends in Badulu Oya catchment, Sri Lanka. The catchment is important as it is in the intermediate climate zone and rich in agricultural productions. Four rain gauges (namely, Badulla, Kandekatiya, Lower Spring Valley, and Ledgerwatte Estate) were used to analyze the rainfalls in the resolutions of monthly, seasonally, and annually. 30-year monthly cumulative rainfall data for the above four gauging stations are analyzed using various standard tests. Nonparametric tests including Mann–Kendall test and sequential Mann–Kendall test and innovative trend analysis methods are used to identify the potential rainfall trends in Badulu Oya catchment. In addition, continuous wavelet transforms and discrete wavelet transforms tests are carried out to check the patterns on rainfall to the catchment. The trend analysis methods are compared against each other to identify the better technique. The results reveal that the nonparametric Mann–Kendall test is powerful to produce the statistically significant rainfall trends in qualitative and quantitative manner. Mann–Kendall analysis shows a positive trend to Ledgerwatte Estate in monthly (3.7 mm in February and 7.4 mm in October), seasonal (6.9 mm in the 2ndintermonsoon), and annual (3 mm annually) scales. However, the analysis records one decreasing rainfall trend to Kandekatiya (8.1 mm in December) only in monthly scale. Nevertheless, it was found that the graphical method can be easily used in qualitative analysis, while discrete wavelet transformations are efficient in identifying the rainfall patterns effectively.
Subject
Multidisciplinary,General Computer Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献