Vibration Analysis and Modeling of an Off-Road Vibratory Roller Equipped with Three Different Cab’s Isolation Mounts

Author:

Nguyen Vanliem12ORCID,Zhang Jianrun1ORCID,Le Vanquynh2,Jiao Renqiang3

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing, China

2. Faculty of Automotive and Power Machinery Engineering, Thai Nguyen University of Technology, Thai Nguyen, Vietnam

3. School of Mechanical and Electrical Engineering, Hubei Polytechnic University, Huangshi, China

Abstract

This study proposes a dynamic model of the vibratory roller interacting with the off-road deformed terrain to analyze the low-frequency performance of three different cab’s isolation mounts under the different operating conditions. In order to evaluate the ride comfort of the vibratory roller with the different cab’s isolation mounts, a three-dimensional nonlinear dynamic model is established. The power spectral density (PSD) and the weighted root mean square (RMS) of acceleration responses of the vertical driver’s seat, cab’s pitch, and roll vibrations are chosen as objective functions in the low-frequency range. Contrastive analysis of low-frequency vibration characteristics of the vibratory roller with the traditional rubber mounts, the hydraulic mounts, and the pneumatic mounts is carried out. Experimental investigations are also used to verify the accuracy of models. The research results show that the hydraulic mounts have an obvious effect on mitigating the cab vibration and improving the ride comfort in comparison with the traditional rubber mounts and the pneumatic mounts.

Funder

Science and Technology Support Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3