Object Tracking with Multi-Classifier Fusion Based on Compressive Sensing and Multiple Instance Learning

Author:

Chen Si1ORCID,Lu Xiaoshun1ORCID,Chen Xiaosen1,Chen Min1ORCID,Chen Jianghu1,Wang Dahan1ORCID,Zhu Shunzhi1ORCID

Affiliation:

1. School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China

Abstract

Object tracking is a critical research in computer vision and has attracted significant attention over the past few years. However, the traditional object tracking algorithms often suffer from the object drifting problem due to various challenging factors in complex environments such as object occlusion and background clutter. This paper proposes a robust and effective object tracking algorithm, called MCM, which combines compressive sensing and online multiple instance learning in a multi-classifier fusion framework. In this framework, we integrate the different discriminative classifiers by learning the varied and compressed feature vectors based on different random projection matrices. And then an improved online multiple instance learning mechanism SMILE is adopted, which introduces the relative similarity to select and weight the instances in the positive bag. The experiments show that the proposed algorithm can improve the performance of object tracking on the challenging video sequences.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Proposed Model for Persian Stance Detection on Social Media;International Journal of Engineering;2023

2. Robustness analysis of cyber-physical power system based on reachable matrix;Systems Science & Control Engineering;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3