Regulation of FoxP3+Regulatory T Cells and Th17 Cells by Retinoids

Author:

Kim Chang H.1

Affiliation:

1. Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA

Abstract

Vitamin A has both positive and negative regulatory functions in the immune system. While vitamin A is required for normal formation of immune cells and epithelial cell barriers, vitamin A deficiency can lead to increased inflammatory responses and tissue damage. The mechanism with which vitamin A and its metabolites such as retinoids negatively regulate inflammatory responses has not been clearly defined. Recently, it has been established that retinoids promote the generation of immune-suppressive FoxP3+regulatory T cells while they suppress the T cell differentiation into inflammatory Th17 cells in the periphery such as intestine. These novel functions of retinoids provide a potentially important immune regulatory mechanism. In this review, we discuss the functions of retinoids in the development of the FoxP3+cells and Th17 cells, the phenotype and functions of retinoid-induced FoxP3+T cells, and the impact of retinoid-induced FoxP3+T cells on the immune tolerance.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Hindawi Limited

Subject

General Medicine,Immunology,Immunology and Allergy

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3