A Microcosmic Syndrome Differentiation Model for Metabolic Syndrome with Multilabel Learning

Author:

Xia Shujie1,Zhang Jia2,Du Guodong2ORCID,Li Shaozi2,Vong Chi Teng3,Yang Zhaoyang1,Xin Jiliang1,Zhu Long1,Gao Bizhen1ORCID,Li Candong1ORCID

Affiliation:

1. Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

2. Department of Artificial Intelligence, Xiamen University, Xiamen 361005, China

3. State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China

Abstract

Background. Metabolic syndrome (MS) is a complex multisystem disease. Traditional Chinese medicine (TCM) is effective in preventing and treating MS. Syndrome differentiation is the basis of TCM treatment, which is composed of location and/or nature syndrome elements. At present, there are still some problems for objective and comprehensive syndrome differentiation in MS. This study mainly proposes a solution to two problems. Firstly, TCM syndromes are concurrent, that is, multiple TCM syndromes may develop in the same patient. Secondly, there is a lack of holistic exploration of the relationship between microscopic indexes, and TCM syndromes. In regard to these two problems, multilabel learning (MLL) method in machine learning can be used to solve them, and a microcosmic syndrome differentiation model can also be built innovatively, which can provide a foundation for the establishment of the next model of multidimensional syndrome differentiation in MS. Methods. The standardization scale of TCM four diagnostic information for MS was designed, which was used to obtain the results of TCM diagnosis. The model of microcosmic syndrome differentiation was constructed based on 39 physicochemical indexes by MLL techniques, called ML-kNN. Firstly, the multilabel learning method was compared with three commonly used single learning algorithms. Then, the results from ML-kNN were compared between physicochemical indexes and TCM information. Finally, the influence of the parameter k on the diagnostic model was investigated and the best k value was chosen for TCM diagnosis. Results. A total of 698 cases were collected for the modeling of the microcosmic diagnosis of MS. The comprehensive performance of the ML-kNN model worked obviously better than the others, where the average precision of diagnosis was 71.4%. The results from ML-kNN based on physicochemical indexes were similar to the results based on TCM information. On the other hand, the k value had less influence on the prediction results from ML-kNN. Conclusions. In the present study, the microcosmic syndrome differentiation model of MS with MLL techniques was good at predicting syndrome elements and could be used to solve the diagnosis problems of multiple labels. Besides, it was suggested that there was a complex correlation between TCM syndrome elements and physicochemical indexes, which worth future investigation to promote the development of objective differentiation of MS.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3