Water Quality Analysis for the Depletion of Dissolved Oxygen due to Exponentially Increasing Form of Pollution Sources

Author:

Manitcharoen N.1,Pimpunchat B.1ORCID,Sattayatham P.1

Affiliation:

1. Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

Analyzing and improving mathematical models for water quality investigation are imperative for water quality issues around the world. This study is aimed at presenting the 1D unsteady state regarding analytical and numerical solutions of dissolved oxygen (DO) concentration in a river, in which the increase of pollution from a source is considered as an exponential term. Laplace transformation was utilized to obtain analytical solutions, while the finite difference technique was selected for numerical solutions. The results show that the rate of pollutant addition along the river (q) and the arbitrary constants of an exponentially increasing pollution source term (λ) affected inversely, while the initial concentration Xi affected directly, DO in the river. These solutions and simulations can be enabled for testing in various scenarios in terms of the behavior of oxygen depletion in polluted rivers.

Funder

King Mongkut's University of Technology North Bangkok

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3