Effect of Temperature and Strain Rate on the Brittleness of China Sandstone

Author:

Yang Xiuyuan123ORCID,Ge Zhenlong4ORCID,Sun Qiang4ORCID,Zhang Weiqiang12ORCID

Affiliation:

1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu Province 221116, China

2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province 221116, China

3. Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding, Hebei Province 071051, China

4. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi Province 710054, China

Abstract

To quantitatively study the influence of temperature and strain rate on the brittleness of sandstone, the mechanical parameters of sandstone under different temperatures and strain rates are collected from the previous literature, and two empirical equations for calculating rock brittleness are used to quantitatively calculate and evaluate the brittleness of sandstone. The results show that both BI1 and BI2 can characterize the brittleness of sandstone, but the applicable conditions are different. The BI1 method is more accurate in calculating the variation in the sandstone brittleness with a strain rate, while the BI2 method is more accurate in calculating its variation with temperature. The brittleness of sandstone increases with the increase in the strain rate, especially when the strain rate exceeds 100 s-1. Under low-temperature conditions, the strength and brittleness of rocks increase due to the strengthening of ice. Under the condition of high temperature, the thermal damage to sandstone is intensified after 400°C, and the quartz phase changes after 600°C, which leads to the increase in microcrack density and the decrease in brittleness of sandstone. The conditions of low temperature and high strain rate are beneficial to the enhancement of sandstone brittleness.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3