Efficient and Privacy-Aware Power Injection over AMI and Smart Grid Slice in Future 5G Networks

Author:

Zhang Yinghui123ORCID,Zhao Jiangfan1,Zheng Dong13ORCID

Affiliation:

1. National Engineering Laboratory for Wireless Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

2. State Key Laboratory of Cryptology, Beijing 100878, China

3. Westone Cryptologic Research Center, Beijing 100070, China

Abstract

Smart grid is critical to the success of next generation of power grid, which is expected to be characterized by efficiency, cleanliness, security, and privacy. In this paper, aiming to tackle the security and privacy issues of power injection, we propose an efficient and privacy-aware power injection (EPPI) scheme suitable for advanced metering infrastructure and 5G smart grid network slice. In EPPI, each power storage unit first blinds its power injection bid and then gives the blinded bid together with a signature to the local gateway. The gateway removes a partial blind factor from each blinded bid and then sends to the utility company aggregated bid and signature by using a novel aggregation technique called hash-then-addition. The utility company can get the total amount of collected power at each time slot by removing a blind factor from the aggregated bid. Throughout the EPPI system, both the gateway and the utility company cannot know individual bids and hence user privacy is preserved. In particular, EPPI allows the utility company to check the integrity and authenticity of the collected data. Finally, extensive evaluations indicate that EPPI is secure and privacy-aware and it is efficient in terms of computation and communication cost.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3