Affiliation:
1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, CO 210016, China
Abstract
The application of artificial intelligence and deep learning in the fields of wireless communication, image and speech recognition, and 3D reconstruction has successfully solved some difficult modeling problems. This paper focuses on the high-precision 3D reconstruction of the motion-blurred cooperative markers, including the Chinese character coded targets (CCTs) and the noncoded circular markers. A simulation-based motion-blurred image generation model is constructed to provide sufficient samples for training the convolutional neural network to identify and match the motion-blurred CCTs on the moving object. The blurred noncoded marker matching is performed through homography. The 3D reconstruction of the markers is realized via the optimization of the spatial moving path within the exposure period. The midpoint of the moving path of the markers is taken as the final reconstruction result. The experimental results show that the 3D reconstruction accuracy of the markers with a certain motion blur effect is about 0.08 mm.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献