Affiliation:
1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
Abstract
Trajectory optimization problem for hypersonic vehicles has long been recognized as a difficult problem. This paper brings control constraints into the trajectory optimization to make the optimal trajectory meet the requirements of control performance. The strong nonlinear characteristic of the ascent phase aerodynamics makes the trajectory optimization problem difficult to be solved by the optimal control theory. A trajectory optimization algorithm based on the improved pigeon-inspired optimization (PIO) algorithm is proposed to solve the complex trajectory optimization problem under multiple constraints. To overcome the obstacle of premature convergence and deceptiveness, the evolutionary strategy of qubit in quantum evolutionary algorithm (QEA) is introduced into the PIO to maintain population diversity and judge the optimal solution. To handle constraints, the penalty function is used to construct the fitness function. The optimal ascent trajectory is obtained by utilizing the improved PIO algorithm. Then, the trajectory inverse algorithm is used to verify the feasibility of the optimal trajectory to ensure that a feasible optimal trajectory is obtained. The comparison results show that the proposed algorithm outperforms particle swarm optimization (PSO) and standard PIO on trajectory optimization. Meanwhile, the simulation result shows that the performance of the optimal ascent trajectory with control constraints is improved and the trajectory is feasible. Therefore, the method is potentially feasible for solving the ascent trajectory optimization problem under control constraint for hypersonic vehicles.
Funder
Foundation of the Graduate Innovation Center, Nanjing University of Aeronautics and Astronautics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献