Affiliation:
1. Núcleo de Investigadores Científicos, Universidad Central del Ecuador, Ciudadela Universitaria Avenida América, 290-4799 Quito, Ecuador
Abstract
We deal with the existence of quantitative estimates for solutions of mixed problems to an elliptic second-order equation in divergence form with discontinuous coefficients. Our concern is to estimate the solutions with explicit constants, for domains in ℝn (n≥2) of class C0,1. The existence of L∞ and W1,q estimates is assured for q=2 and any q<n/(n-1) (depending on the data), whenever the coefficient is only measurable and bounded. The proof method of the quantitative L∞ estimates is based on the De Giorgi technique developed by Stampacchia. By using the potential theory, we derive W1,p estimates for different ranges of the exponent p depending on the fact that the coefficient is either Dini-continuous or only measurable and bounded. In this process, we establish new existences of Green functions on such domains. The last but not least concern is to unify (whenever possible) the proofs of the estimates to the extreme Dirichlet and Neumann cases of the mixed problem.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献