Look-Ahead Algorithm with Whole S-Curve Acceleration and Deceleration

Author:

Chen Youdong1,Ji Xudong1,Tao Yong1,Wei Hongxing1

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Abstract

Tool paths of a complex contour machining generated by commercial CAD/CAM systems are mainly composed of many short linear/circular blocks. Though the look-ahead algorithms can improve speed and accuracy in the machining of short linear/circular segments, most of them just deal with linear segments with trapezoid acceleration and deceleration (acc/dec). In addition, the look-ahead algorithms with S-curve acc/dec are too complex to adopt the equivalent S-curve profile by approximation algorithm. To increase the smoothness of feedrate profile and machining efficiency of continuous short line and circle machining, this paper presents a feedrate profile generation approach and corresponding look-ahead algorithm with whole S-curve acc/dec. With the proposed look-ahead scheme, the feedrate profiles with S-curve acc/dec can work efficiently in a lot of short line and circle segments. Thus, the machining productivity can be increased and the feedrate profiles are smooth. The simulation and experiments verify the feasibility and validity of the proposed approach.

Funder

Major National S&T Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Simulation of the Stepping Motor Operation Curve;Journal of Physics: Conference Series;2023-12-01

2. An offline application that determines themaximum accuracy of the realization ofreference points from G-code for givenparameters of CNC machine dynamics;Bulletin of the Polish Academy of Sciences Technical Sciences;2023-09-05

3. Mathematical Preliminaries;Dynamic Modeling and Boundary Control of Flexible Axially Moving System;2023

4. AGV Variable Speed Control for Human Body Adaptability;2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2022-12-16

5. S-Shape Feedrate Profile with Smoothly-Limited Jerk for Threading Movements Synchronization in CNC Machining;Smart Technologies in Urban Engineering;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3